Math, asked by mythili38, 11 months ago

(sin theta+1+cos theta)(sin theta -1+cos theta)sec theta.cosec theta=2​

Answers

Answered by Acekiller
35

Answer:

the answer is attached

if you find it helpful then follow me and Mark as brainliest

Attachments:
Answered by FelisFelis
54

(\sin \theta+1+\cos \theta)(\sin \theta -1+\cos \theta)\sec \theta\cdot\csc \theta=2 Proved.

Step-by-step explanation:

Consider the provided information.

(\sin \theta+1+\cos \theta)(\sin \theta -1+\cos \theta)\sec \theta\cdot\csc \theta=2

Consider the LHS.

(\sin \theta+1+\cos \theta)(\sin \theta -1+\cos \theta)\sec \theta\cdot\csc \theta

Rewrite the equation.

((\sin \theta+\cos \theta)+1)((\sin \theta+\cos \theta)-1)\sec \theta\cdot\csc \theta

Now use the formula: a^2-b^2=(a+b)(a-b)

((\sin \theta+\cos \theta)^2-1^2)\sec \theta\cdot\csc \theta

(\sin^2 \theta+\cos^2 \theta+2\sin\theta\cos\theta-1)\sec \theta\cdot\csc \theta

(1+2\sin\theta\cos\theta-1)\sec \theta\cdot\csc \theta (∴ sin²θ+cos²θ=1)

(2\sin\theta\cos\theta)\frac{1}{\cos\theta}\cdot\frac{1}{\sin\theta}=2

Hence, proved LHS=RHS

#Learn more

Prove that

Sin80 -cos110 = root3sin50

brainly.in/question/13091100

Similar questions