sin (theta -π/6) + cos(theta-π/3) =√3 sin theta
Answers
Answer:
Verified answer✅
3sin2θ=2sin3θ
3sin2θ=2sin3θ→3×2sincosθ=2(3sinθ−4sin3θ)
3sin2θ=2sin3θ→3×2sincosθ=2(3sinθ−4sin3θ)→6sinθcosθ=6sinθ−8sin3θ
3sin2θ=2sin3θ→3×2sincosθ=2(3sinθ−4sin3θ)→6sinθcosθ=6sinθ−8sin3θ→sinθ(6cosθ−6+8sin2θ)=0
3sin2θ=2sin3θ→3×2sincosθ=2(3sinθ−4sin3θ)→6sinθcosθ=6sinθ−8sin3θ→sinθ(6cosθ−6+8sin2θ)=0∴sinθ=0 or 3cosθ+4sin2θ=3
3sin2θ=2sin3θ→3×2sincosθ=2(3sinθ−4sin3θ)→6sinθcosθ=6sinθ−8sin3θ→sinθ(6cosθ−6+8sin2θ)=0∴sinθ=0 or 3cosθ+4sin2θ=3∴sinθ=0 or 3cosθ+4(1−cos2θ)=3
3sin2θ=2sin3θ→3×2sincosθ=2(3sinθ−4sin3θ)→6sinθcosθ=6sinθ−8sin3θ→sinθ(6cosθ−6+8sin2θ)=0∴sinθ=0 or 3cosθ+4sin2θ=3∴sinθ=0 or 3cosθ+4(1−cos2θ)=3∴sinθ=0 or 3cosθ−4cos2θ+1=0
3sin2θ=2sin3θ→3×2sincosθ=2(3sinθ−4sin3θ)→6sinθcosθ=6sinθ−8sin3θ→sinθ(6cosθ−6+8sin2θ)=0∴sinθ=0 or 3cosθ+4sin2θ=3∴sinθ=0 or 3cosθ+4(1−cos2θ)=3∴sinθ=0 or 3cosθ−4cos2θ+1=0∴4cos2θ−3cosθ−1=0
3sin2θ=2sin3θ→3×2sincosθ=2(3sinθ−4sin3θ)→6sinθcosθ=6sinθ−8sin3θ→sinθ(6cosθ−6+8sin2θ)=0∴sinθ=0 or 3cosθ+4sin2θ=3∴sinθ=0 or 3cosθ+4(1−cos2θ)=3∴sinθ=0 or 3cosθ−4cos2θ+1=0∴4cos2θ−3cosθ−1=0∴4cos2θ−4cosθ+cosθ−1=0
3sin2θ=2sin3θ→3×2sincosθ=2(3sinθ−4sin3θ)→6sinθcosθ=6sinθ−8sin3θ→sinθ(6cosθ−6+8sin2θ)=0∴sinθ=0 or 3cosθ+4sin2θ=3∴sinθ=0 or 3cosθ+4(1−cos2θ)=3∴sinθ=0 or 3cosθ−4cos2θ+1=0∴4cos2θ−3cosθ−1=0∴4cos2θ−4cosθ+cosθ−1=0 ∴4cosθ(cosθ−1)+1(cosθ−1)=0
3sin2θ=2sin3θ→3×2sincosθ=2(3sinθ−4sin3θ)→6sinθcosθ=6sinθ−8sin3θ→sinθ(6cosθ−6+8sin2θ)=0∴sinθ=0 or 3cosθ+4sin2θ=3∴sinθ=0 or 3cosθ+4(1−cos2θ)=3∴sinθ=0 or 3cosθ−4cos2θ+1=0∴4cos2θ−3cosθ−1=0∴4cos2θ−4cosθ+cosθ−1=0 ∴4cosθ(cosθ−1)+1(cosθ−1)=0∴(4cosθ+1)(cosθ−1)=0
3sin2θ=2sin3θ→3×2sincosθ=2(3sinθ−4sin3θ)→6sinθcosθ=6sinθ−8sin3θ→sinθ(6cosθ−6+8sin2θ)=0∴sinθ=0 or 3cosθ+4sin2θ=3∴sinθ=0 or 3cosθ+4(1−cos2θ)=3∴sinθ=0 or 3cosθ−4cos2θ+1=0∴4cos2θ−3cosθ−1=0∴4cos2θ−4cosθ+cosθ−1=0 ∴4cosθ(cosθ−1)+1(cosθ−1)=0∴(4cosθ+1)(cosθ−1)=0∴cosθ=4−1 or cosθ=1
3sin2θ=2sin3θ→3×2sincosθ=2(3sinθ−4sin3θ)→6sinθcosθ=6sinθ−8sin3θ→sinθ(6cosθ−6+8sin2θ)=0∴sinθ=0 or 3cosθ+4sin2θ=3∴sinθ=0 or 3cosθ+4(1−cos2θ)=3∴sinθ=0 or 3cosθ−4cos2θ+1=0∴4cos2θ−3cosθ−1=0∴4cos2θ−4cosθ+cosθ−1=0 ∴4cosθ(cosθ−1)+1(cosθ−1)=0∴(4cosθ+1)(cosθ−1)=0∴cosθ=4−1 or cosθ=1∴sinθ=1−(4−1)
Answer:
namaste nhi aata delete krne btado