Math, asked by hemanth861137, 3 months ago

(sin theta-cos theat)/(sin theat+cos theta) + (sin theta+cos theta)/(sin theta-costheta) =2/(2sin^theta-1)​

Answers

Answered by rishim385
22

Answer:

THIS IS YOUR REQUIRED SOLUTION OF REQUIRED QUESTION

Attachments:
Answered by Anonymous
77

We have,

\frac{ \sinθ +  \cosθ }{  \sinθ -  \cos θ }  +  \frac{ \sinθ -  \cos θ }{ \sinθ +  \cosθ}  \\  =  \frac{ (\sinθ +  \cosθ) ^{2}  + ( \sinθ -  \cosθ )^{2}  }{( \sinθ -  \cos θ)( \sinθ +  \cosθ )}  \\  =  \frac{ { \sin }^{2}θ +  { \cos}^{2}θ + 2 \sin θ \cos θ +  { \sin }^{2}θ +  \cos ^{2} θ - 2 \sin θ \cosθ  }{ \sin^{2}θ -  \cos^{2}θ   }  \\  =  \frac{1 + 1}{ \sin^{2}θ  -   { \cos }^{2}θ  }  \\  =  \frac{2}{ { \sin }^{2} θ -  { \cos }^{2}θ}  \\  =  \frac{2}{ { \sin }^{2}θ - (1 -  { \sin }^{2}θ)  }  \\  =  \frac{2}{2 { \sin}^{2}θ - 1 }

#NAWABZAADI

Similar questions