sin theta - cos theta +1/cos theta + sin theta -1 = 1 /sec theta - tan theta
Answers
Answered by
1
Step-by-step explanation:
(sin θ - cos θ +1)/(cos θ + sin θ -1) = 1 /(sec θ - tan θ)
LHS = 1 /{(1 / cos θ) - (sin θ / cos θ)};
= 1 /{(1 - sin θ) / cos θ};
= cos θ/ (1 - sin θ);
(sin θ - cos θ +1)/(cos θ + sin θ -1) = cos θ/ (1 - sin θ);
(sin θ - cos θ +1)×(1 - sin θ) = cos θ×(cos θ + sin θ -1);
sin θ -sin^2 θ -cos θ +cos θsinθ +1 -sin θ = cos^2 θ + cos θsin θ -cos θ.
-sin^2 θ -cos θ +cos θsinθ +1 = cos^2 θ + cos θsin θ -cos θ.
-sin^2 θ +1 = cos^2 θ
1 = cos^2 θ + sin^2 θ;
1 = 1; (since, cos^2 θ + sin^2 θ = 1)
Thus, LHS = RHS.
That's all.
Similar questions
English,
30 days ago
Math,
30 days ago
Math,
2 months ago
Social Sciences,
2 months ago
Physics,
9 months ago