Math, asked by himanshusaini2304200, 3 months ago

sin theta / cos theta (1- cot theta) + cos theta / sin theta ( 1- tan theta ) = 1 + sec theta * cosec theta​

Answers

Answered by SuitableBoy
79

{\huge{\underline{\underline{\rm{Question:-}}}}}

Prove that

 \sf \:  \frac{sin \theta}{cos \theta(1 - cot \theta)}  +  \frac{cos \theta}{sin \theta(1 - tan \theta)}  = 1 + sec \theta \times cosec \theta \\

 \\

{\huge{\underline{\underline{\rm{Answer\checkmark}}}}}

Taking LHS ,

 \mapsto \rm \:  \frac{sin \theta}{cos \theta(1 - cot \theta)}  +  \frac{cos \theta}{sin \theta(1 - tan \theta)}  \\

Change cot and tan in sin and cos .

 \mapsto \rm \:  \frac{sin \theta}{cos \theta(1 -  \frac{cos \theta}{sin \theta} )}  +  \frac{cos \theta}{sin \theta(1 -  \frac{sin \theta}{cos \theta} )}  \\

Take LCM

 \mapsto \rm \:  \frac{sin \theta}{cos \theta( \frac{sin \theta - cos \theta}{sin \theta} )}  +  \frac{cos \theta}{sin \theta( \frac{cos \theta - sin \theta}{cos \theta} )}  \\

 \mapsto \rm \:  \frac{sin \theta \times sin \theta}{cos \theta(sin \theta -cos \theta)}  +  \frac{cos \theta \times cos \theta}{sin \theta(cos \theta - sin \theta)}  \\

 \mapsto \rm \:  \frac{ {sin}^{2}  \theta}{cos \theta(sin \theta - cos \theta)}   -  \frac{ {cos}^{2}  \theta}{sin \theta(sin \theta - cos \theta)}  \\

In the above step , we took minus(-) common from denominator of second part .

Now , Take LCM ,

  \mapsto \rm \:  \frac{ {sin}^{3}  \theta -  {cos}^{3} \theta }{sin \theta \times cos \theta(sin \theta - cos \theta)}  \\

Expand the formula of a³ - b³

 \mapsto \rm \:  \frac{ \cancel{(sin \theta - cos \theta)}( {sin}^{2}  \theta +  {cos}^{2} \theta + sin \theta \: cos \theta )}{sin \theta \: cos \theta \cancel{(sin \theta - cos \theta)}}  \\

Now , as we know ,

sin² A + cos²A = 1

 \mapsto \rm \:  \frac{1 + sin \theta \: cos \theta}{sin \theta \: cos \theta}  \\

 \mapsto \rm \:  \frac{1}{sin \theta \: cos \theta}  +  \frac{ \cancel{sin \theta \: cos \theta}}{ \cancel{sin \theta \: cos \theta}}  \\

Now ,

Change \frac{1}{sinA} into cosecA

and

Change \frac{1}{cosA} into secA

 \mapsto \rm \:  \frac{1}{sin \theta}  \times  \frac{1}{cos \theta}  + 1 \\

 \mapsto \rm \: sec \theta \times cosec \theta \:  + 1

As you can see ,

It is equal to RHS .

Hence Proved !

 \\

_________________________

Formula Used :

  •  \sf \: cot  \:  \alpha  =  \frac{cos \:  \alpha }{sin \:  \alpha }  \\
  •  \sf  \: tan \:  \alpha  =  \frac{sin \:  \alpha }{cos \:  \alpha }  \\
  •  \sf \:  \frac{1}{sin \:  \alpha }  = coses \:  \alpha  \\
  •  \sf \:  \frac{1}{cos \:  \alpha }  = sec \:  \alpha  \\
  • a³ - b³ = (a-b)(a²+b²+ab)
  • sin² \alpha + cos² \alpha = 1
Answered by rinkichakraborty8741
3

Answer:

sinθ(1+tanθ)+cosθ(1+cotθ)

=sinθ+ cosθ sin 2θ+cosθ+ sinθcos 2 θ

=sinθ+ sinθcos 2+ cossin 2 θ+cosθA= sinθ

sin

2

θ+cos

2

θ

+

cosθ

sin

2

θ+cos

2

θ

As,sin

2

θ+cos

2

θ=1

A=

sinθ

1

+

cosθ

1

= cosecθ+secθ

Similar questions