Math, asked by hemanthhanu2006, 11 months ago

sin theta + cos theta = a
then
sin power 4 theta + cos power 4 theta = ​

Answers

Answered by aspurao03
1

Step-by-step explanation:

i have sent the answer above

Attachments:
Answered by warylucknow
2

Answer:

The value of (sin⁴θ + cos⁴θ) is 1-2[\frac{(1-a)^{2}}{2}]^{2}.

Step-by-step explanation:

It is provide that: sin θ + cos θ = a.

Then

(sin\theta+cos\theta)^{2}=sin^{2}\theta+cos^{2}\theta+2sin\theta\ cos\theta\\a^{2}=1+2sin\theta\ cos\theta\\2sin\theta\ cos\theta=1-a^{2}\\sin\theta\ cos\theta=\frac{(1-a)^{2}}{2}

Solve for sin⁴θ + cos⁴θ as follows:

(sin^{2}\theta+cos^{2}\theta)^{2}=sin^{4}\theta+cos^{4}\theta+2sin^{2}\theta\ cos^{2}\theta\\1=sin^{4}\theta+cos^{4}\theta+2(sin\theta\ cos\theta)^{2}\\1=sin^{4}\theta+cos^{4}\theta+2[\frac{(1-a)^{2}}{2}]^{2}\\sin^{4}\theta+cos^{4}\theta=1-2[\frac{(1-a)^{2}}{2}]^{2}

Thus, the value of (sin⁴θ + cos⁴θ) is 1-2[\frac{(1-a)^{2}}{2}]^{2}.

Similar questions