Math, asked by zebia, 1 year ago

sin theta - cos theta = root 2 sin theta then prove that sin theta + cos theta = root 2 cos theta

Answers

Answered by MrThakur14Dec2002
3
Solution...


 \cos( \alpha )  -  \sin( \alpha )  =  \sqrt{2}  \sin( \alpha ) .................. given


 \cos( \alpha )  =  \sqrt{2}  \sin( \alpha ) +   \sin( \alpha )  \\  \\   \cos( \alpha )  = ( \sqrt{2}  + 1) \sin( \alpha  )  \\  \\  \frac{1}{ \sqrt{2} + 1 }  =  \frac{ \sin( \alpha ) }{ \cos( \alpha  ) }



Now Rationalise LHS


 \frac{1}{ \sqrt{2}  + 1}  \times  \frac{ \sqrt{2} - 1 }{ \sqrt{2}  - 1}  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  \\  \\  \frac{ \sqrt{2}  - 1}{ { (\sqrt{2} \:  )}^{2} -  {1}^{2}  }  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }


 \frac{ \sqrt{2 }  - 1}{2 - 1}  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  \\  \\   (\sqrt{2 }  - 1) =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  \\  \\   \cos( \alpha ) ( \sqrt{2}  - 1) =  \sin( \alpha )


 \sqrt{2}  \cos( \alpha )  -  \cos( \alpha )  =  \sin( \alpha )  \\  \\  \sqrt{2}  \cos( \alpha )  =  \sin( \alpha )  +  \cos( \alpha )  \\  \\  \\ therefore............ \\  \\  \\  \sin( \alpha )  +  \cos( \alpha )   = \sqrt{2}  \cos( \alpha )
 \\  \\  \\ hence \: proved......... \\  \\  \\ hope \: this \: will \: help \: you \: ...................... \\  \\  \\  \\  \\  \\ be \: brainly................



☞ ⛧⛧ Ⓜr. Thakur ⛧⛧
Answered by astha2109
2
hope this help you buddy
with lots of love❤
Attachments:
Similar questions