sin theta +cos theta = root 3, then prove that tan theta cot theta =1
Answers
Answered by
1
Step-by-step explanation:
Given Sin theta +cos theta = root 3, then prove that tan theta cot theta =1
Given sin θ + cos θ = √3
Squaring both sides we get
Sin^2 θ + cos^2 θ + 2 sin θ cos θ = 3
1 + 2 sin θ cos θ = 3
2 sin θ cos θ = 2
So sin θ cos θ = 1
Now consider tan θ + cot θ
= sin θ / cos θ + cos θ / sin θ
= sin^2 θ + cos ^2 θ / sin θ cos θ
= 1 / sin θ cos θ
= 1/ 1
= 1
Answered by
0
Answer:
Proved
Step-by-step explanation:
Use Identity (a + b) ² =a² + b² + 2ab
Hence proved.
Similar questions