sin theta / cot theta+cosec theta = 2 + sin theta / cot theta - cosec theta prove that
Answers
Answered by
268
[tex] \frac{sin\ \alpha }{cot\ \alpha\ +\ cosec\ \alpha } = \frac{sin\ \alpha [cosec\ \alpha\ -\ cot\ \alpha ]}{(cosec\ \alpha\ +\ cot\ \alpha )(cosec\ \alpha\ -\ cos\ \alpha) } \\ \\
= \frac{1 - cos \alpha }{1} \\ \\
Now,\ \ 2 + \frac{Sin\ \alpha }{ cot\ \alpha\ -\ cosec\ \alpha } = 2 + \frac{sin\ \alpha (cot\ \alpha + cosec\ \alpha )}{(cot\ \alpha -\ cosec \alpha )(cot\ \alpha +\ cosec\ \alpha )} \\ \\
2 + \frac{[cos\ \alpha + 1]}{- 1} \\
1 - cos\ \alpha \\
[/tex]
Answered by
5
Answer:
Note : Here I am using A instead of theta.
LHS = sinA/(cotA+cosecA)
= sinA/[(cosA/sinA)+(1/sinA)]
= sinA/[(cosA+1)/sinA]
= sin²A/(1+cosA)
= (1-cos²A)/(1+cosA)
/* sin²A = 1 - cos²A */
= [(1+cosA)(1-cosA)]/(1+cosA)
/* a²-b² = (a+b)(a-b) */
= 1 - cosA ----(1)
RHS = 2+ [sinA/(cotA-cosecA)]
= 2+sinA/[(cosA/sinA)-(1/sinA)]
= 2+SinA/[(cosA-1)/sinA]
= 2+ [ sin²A/(cosA-1)]
= 2 - ( sin²A)/(1-cosA)
= 2- [ (1-cos²A)/(1-cosA)]
= 2-[(1+cosA)(1-cosA)/(1-cosA)]
= 2 - ( 1+cosA)
= 2-1-cosA
= 1-cosA ----(2)
Form (1) & (2) , we conclude that,
(1) = (2)
LHS = RHS
••••
Attachments:
Similar questions
Math,
8 months ago
Geography,
8 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Physics,
1 year ago
English,
1 year ago