Math, asked by IHateGravity, 4 days ago

sin theta/cot theta + cosec theta = 2 + sin theta/cot theta - cosec theta​

Answers

Answered by Anonymous
82

 \boxed{  \boxed{\begin{array}{} \sf  \rightarrow We \:  have \:  to  \: prove \:  that \\\\  \hookrightarrow\rm\dfrac{ \sin \theta}{ \cot \theta +  \cosec \theta } = 2 +  \dfrac{ \sin \theta}{ \cot \theta  -   \cosec \theta } or,\dfrac{ \sin \theta}{ \cot \theta +  \cosec \theta }   -   \dfrac{ \sin \theta}{ \cot \theta  -   \cosec \theta } = 2\end{array}}}

 \boxed{ \boxed{\begin{array}{ lr}   \rm LHS =   \dfrac{ \sin \theta}{ \cot \theta +  \cosec \theta }   -   \dfrac{ \sin \theta}{ \cot \theta  -   \cosec \theta }  \\\\\\ \hookrightarrow \dfrac{ \sin \theta}{ \cosec \theta  +  \cot \theta}  + \dfrac{ \sin \theta}{ \cosec \theta   -   \cot \theta} \\\\\\  \hookrightarrow  \sin \theta \bigg \{\dfrac{ 1}{ \cosec \theta  +  \cot \theta}  + \dfrac{ 1}{ \cosec \theta   -   \cot \theta} \bigg \}  \\\\\\ \hookrightarrow \sin \theta \bigg \{\dfrac{ \cosec \theta  \cancel{  -   \cot \theta} + \cosec \theta    \cancel{+   \cot \theta}}{ \cosec ^{2}  \theta    -  \cot ^{2} \theta}    \bigg\} \\\\\\   \hookrightarrow \sin \theta \bigg \{ \dfrac{2 \cosec \theta}{1}  \bigg \} \\\\\\ \hookrightarrow \sin \theta(2 \cosec \theta)  \\\\\\ \hookrightarrow \cancel{ 2\sin \theta} \times  \dfrac{1}{  \cancel{\sin \theta}}  \\\\\\  \hookrightarrow 2\\  \\ \end{array}}}

  \boxed{\boxed{ \begin{array}{lr}  \boxed{\rm LHS =  \dfrac{ \sin \theta}{ \cot \theta +  \cosec \theta} } \\\\\\   \hookrightarrow \sin \theta( \cosec \theta -  \cot \theta)   \\  \\  \\ \hookrightarrow  \sin \theta \bigg \lbrace \dfrac{1}{ \sin  \theta} -  \dfrac{ \cos \theta}{ \sin \theta} \bigg \rbrace \\\\\\\hookrightarrow    \cancel{\sin \theta} \bigg \lbrace \dfrac{1 -  \cos \theta}{ \cancel{\sin  \theta}  } \bigg\rbrace  \\\\\\ \hookrightarrow 1 -  \cos \theta \\\\\\ \hookrightarrow2 - (1 +  \cos \theta) \\\\\\ \hookrightarrow2 -  \dfrac{(1 +  \cos \theta)(1  -  \cos \theta)}{1 - \cos \theta}  \\\\\\ \hookrightarrow2 -  \dfrac{(1  -  \cos^{2} \theta)}{1 - \cos \theta} \\\\\\ \hookrightarrow2 -  \dfrac{\sin^{2} \theta}{1 - \cos \theta} \\\\\\ \hookrightarrow2 -  \dfrac{ \sin \theta}{ \dfrac{1 -  \cos \theta}{ \sin \theta} } \\\\\\   \hookrightarrow2 -  \dfrac{ \sin \theta}{ \dfrac{1}{ \sin \theta}  -  \dfrac{ \cos \theta}{ \sin \theta} } \\\\\\ \boxed{ \rm  RHS = 2 -  \dfrac{ \sin \theta}{ \cosec \theta -  \cot  \theta} } \\  \\ \end{array}}}

Similar questions