Math, asked by mohitkunar990, 6 months ago

sin theta tan theta /1-cos theta = 1+sec theta​

Answers

Answered by Aryan0123
17

To prove:

\large{ \sf {\dfrac{sin \theta \: tan \theta}{1 - cos \theta} = 1 + sec \theta}}\\\\\\\sf{Taking \: the \: LHS}\\\\ \\\sf{\dfrac{sin \theta \times \dfrac{sin \theta}{cos \theta}}{1 - cos \theta}}\\\\\\\\= \sf{\dfrac{ \dfrac{sin^{2} \theta }{cos \theta}}{1 - cos \theta}}\\\\\\\\= \sf{\dfrac{sin^{2} \theta}{cos \theta} \times \dfrac{1}{1 - cos \theta}}\\\\\\\\= \sf{\dfrac{1 - cos^{2} \theta}{cos \theta} \times \dfrac{1}{1 - cos \theta}}\\\\\\\\

= \sf{\dfrac{(1 + cos \theta)(1 -cos \theta)}{cos \theta} \times \dfrac{1}{1 - cos \theta}}\\\\\\\\= \sf{\dfrac{1 + cos \theta}{cos \theta}}\\\\\\= \sf{\dfrac{1}{cos \theta}+ \dfrac{cos \theta}{cos \theta}}\\\\\\ = \sf{sec \theta + 1}\\\\= \boxed{\bf{1 + sec \theta}}\\\\\\\rm{HENCE \: PROVED}

Identities used:

  • tanθ = sinθ ÷ cosθ
  • sin²θ = 1 - cos²θ
  • (a + b)(a - b) = a² - b²
  • 1 ÷ cosθ = secθ

Similar questions