Math, asked by TriggerdStudent, 1 month ago

sin theta + tan theta upon cos theta is equals to tan theta in bracket 1 + sec theta plss answer this​

Answers

Answered by SparklingBoy
174

 \large \dag Question :-

Prove that ;

 \boxed{ \boxed{ \rm  \frac{sin \theta + tan\theta}{cos\theta}   =  tan\theta(1 + sec\theta) }} \bigstar\\

 \large \dag Step by step Solution :-

Taking Right Hand Side (RHS)

 \:  \:  \:  \:  \rm tan\theta(1 + sec\theta) \\  \\

 \small \rm =  tan\theta \bigg(1 +  \frac{1}{cos\theta} \bigg) \:  \:  \bigg\{\red{\because \sf sec\theta =  \frac{1}{cos\theta} }  \bigg\} \\\\

 \rm = tan\theta +  \frac{tan\theta}{cos\theta}  \\  \\

 \small \rm =  \frac{sin\theta}{cos\theta}  +  \frac{tan\theta}{cos\theta}  \:  \:  \bigg\{\red{\because \sf tan\theta =  \frac{ sin\theta}{cos\theta} }  \bigg\} \\\\

Taking cosθ as LCM ;

\\ \large  \pmb{ \purple{\rm  =  \frac{sin\theta + tan\theta}{cos\theta} } }\\  \\

which is your Left Hand Side (LHS)

\large \pink \maltese \:  \: \underline{\orange{\underline{\frak{\pmb{\text Hence\:\:Proved }}}}}

Answered by PopularStar
141

Correct Question :-

Prove that

  \pmb{\boxed{ \rm  \frac{sin \theta + tan\theta}{cos\theta}   =  tan\theta(1 + sec\theta) }}\LARGE \dag\\

_________________________

Solution with explanation :-

LHS 》

\frac{sin \theta + tan\theta}{cos\theta}    \\  \\ =  \frac{sin \theta}{cos\theta}  +  \frac{tan\theta }{{cos\theta} }  \\  \\  =  \frac{sin \theta}{cos\theta}  +  tan\theta \times \frac{1 }{{cos\theta} }  \\  \\  = tan\theta  +  tan\theta \times sec \theta \\  \\   \pink{ \large  \pmb = \pmb{ tan\theta(1 + sec\theta)}}  \\  \\ \red{  \rm \Large = RHS}

_________________________

Used Formulae :-

 \rm \bigstar \:  \frac{sin\theta}{cos\theta} = tan\theta \\ \\   \rm\bigstar \:  \frac{1}{cos\theta}  = sec\theta

Similar questions