Math, asked by sagacioux, 1 month ago

The difference in the areas of two concentric circles is 66 cm² and the radius of the outer circle is 11 cm. What is the radius of the inner circle?

(a) 8 cm
(b) 9 cm
(c) 10 cm
(d) 7 cm​

Answers

Answered by TarifTheBrainlyBoy
1

The radius of the inner circle is 14cm.

Step-by-step explanation:

Let the radius of the inner circle = r

Given :

Area enclosed between two concentric circles , A = 770 cm²

Radius of the outer circle, R = 21cm

Area enclosed between two concentric circles, A = Area of the Outer circle – Area of the inner circle

770 = πR² – πr²

770 = π(R² - r²)

770 = π(21² – r²)

770 = π(441 - r²)

770 = 22/7 (441 - r²)

770 × 7 = 22(441 - r²)

(441 - r²) = 770 × 7 / 22

(441 - r²) = (70 × 7)/2

(441 - r²) = 35 × 7

245 = 441 – r²

r² = 441 – 245

r² = 196

r = √196

r = 14

r = 14cm

Hence, the radius of the inner circle is 14cm.

HOPE THIS ANSWER WILL HELP YOU….

Answered by saumyaagupta1
2

Answer:

Radius = 10 cm

Step-by-step explanation:

area of outer circle = 11*11*22/7

                                = 121*22/7

                                =2662/7

                                =370 2/7 - 66 = 304 2/7  

area of the inner circle = 10*10*22/7

                                      =100*22/7

                                      =2200/7

                                      =304 2/7

radius of inner circle = 10 cm

Mark me as the Brainliest

Similar questions
Math, 17 days ago