Sin thita divided by 1- cot thita + cos thita divided by 1- tan thita is equal to sin thita + cos thita prove this
Answers
Answered by
0
Answer:
8644354652457234546455437352
Answered by
0
Step-by-step explanation:
using a instead of theta
(sin a/1-cot a)+(cos a/1-tan a)
={sin a/(1-(cos a/sin a)} + {cos a/(1-(sin a/cos a)}.
[Breaking up cot a and tan a]
={sin a/((sin a-cos a)/sin a)} + {cos a/((cos a - sin a)/cos a)}
[taking the LCM]
={sin²a/(sin a-cos)} + {cos²a/(cos a-sin a)}
={sin²a/(sin a-cos)} - {cos²a/(sin a-cos a)}
[ taking - common to make both the LCM equal]
=(sin²a - cos²a)/(sin a-cos a)
={(sin a+cos a)(sin a-cos a)}/(sin a-cos a)
[breaking up sin²a- cos²a]
=sin a+cos a
[ cancelling sin a-cos a both in numerator & denominator]
Hence proved
Similar questions