sin x + sin square x is equal to 1 then find the value of cos square X + Cos^4 X
Answers
Answered by
11
AnswEr :
The value of the above expression is 1
Given,
sin x + sin²x = 1
We have to find the value of cos²x + cos⁴x
Now,
sin x + sin²x = 1
→ sin x = 1 - sin²x
→ sin x = cos²x
Thus,
cos²x + cos⁴x
→ cos²x + (cos²x)²
→ cos²x + (sin x)²
→ sin²x + cos²x (sin²∅ + cos²∅ = 1)
→ 1
Answered by
17
Answer:
Given that
sinx + sin²x = 1
sinx = 1 - sin²x
We know that
1 - sin²x = cos²x
Now,
sinx = cos²x
To find:
cos²x + cos⁴x
Method 1 :
Substituting cos²x = sinx
sinx + (cos²x)²
= sinx + sin²x
It is already given that sinx + sin²x = 1
Now,
sinx + sin²x = 1
Method 2 :
cos²x + (cos²x)²
Substituting cos²x = sinx only for second term
cos²x + sin²x
Using first identity sin²x + cos²x = 1
cos²x + sin²x = 1
cos²x + cos⁴x = 1
Similar questions