Math, asked by samyadey, 10 months ago

sin x + sin y / sin x - sin y = tan x + y / 2 cot x - y / 2​

Answers

Answered by Anonymous
5

Complete Question :

Prove that : ( sin x + sin y ) / ( sin x - sin y ) = tan [ ( x + y )/ 2 ] .  cot[ ( x - y ) / 2​ ]

Answer :

( sin x + sin y ) / ( sin x - sin y ) = tan [ ( x + y )/ 2 ] .  cot[ ( x - y ) / 2​ ]

Consider LHS

=  ( sin x + sin y ) / ( sin x - sin y )

Using Sum - to - Product identities

  • \rm sin \ x+sin \ y =2sin\Bigg(\dfrac{x+y}{2}\Bigg).cos\Bigg(\dfrac{x-y}{2}\Bigg)

  • \rm sin \ x-sin \ y =2cos\Bigg(\dfrac{x+y}{2}\Bigg).sin\Bigg(\dfrac{x-y}{2}\Bigg)

\sf =\dfrac{2sin\Bigg(\dfrac{x+y}{2}\Bigg).cos\Bigg(\dfrac{x-y}{2}\Bigg)}{2cos\Bigg(\dfrac{x+y}{2}\Bigg).sin\Bigg(\dfrac{x-y}{2}\Bigg)}

\sf =\dfrac{sin\Bigg(\dfrac{x+y}{2}\Bigg).cos\Bigg(\dfrac{x-y}{2}\Bigg)}{cos\Bigg(\dfrac{x+y}{2}\Bigg).sin\Bigg(\dfrac{x-y}{2}\Bigg)}

It can be written as

\sf =\dfrac{sin\Bigg(\dfrac{x+y}{2}\Bigg)}{cos\Bigg(\dfrac{x+y}{2}\Bigg)} \times \dfrac{cos\Bigg(\dfrac{x-y}{2}\Bigg)}{sin\Bigg(\dfrac{x-y}{2}\Bigg)}

Using sin ∅ / cos ∅ = tan ∅ and cos ∅ / sin ∅ = cot ∅ we get ,

\sf =tan \Bigg(\dfrac{x+y}{2}\Bigg) . cot \Bigg(\dfrac{x-y}{2}\Bigg) \\\\\\ \sf = RHS

Hence Proved.

Similar questions