sin x + sin y / sin x - sin y = tan x + y / 2 cot x - y / 2
Answers
Answered by
5
Complete Question :
Prove that : ( sin x + sin y ) / ( sin x - sin y ) = tan [ ( x + y )/ 2 ] . cot[ ( x - y ) / 2 ]
Answer :
( sin x + sin y ) / ( sin x - sin y ) = tan [ ( x + y )/ 2 ] . cot[ ( x - y ) / 2 ]
Consider LHS
= ( sin x + sin y ) / ( sin x - sin y )
Using Sum - to - Product identities
It can be written as
Using sin ∅ / cos ∅ = tan ∅ and cos ∅ / sin ∅ = cot ∅ we get ,
Hence Proved.
Similar questions