Math, asked by tiwarimansi203, 1 year ago

sin (x+y)/sin (x-y)=tanx+tany/tanx-tany proof that

Answers

Answered by gravitation1
137
please mark it as brainliest.....
Attachments:

tiwarimansi203: thankuuu so much
gravitation1: welcome
tiwarimansi203: hmm
Answered by harendrachoubay
42

\dfrac{\sin (x+y}{\sin (x-y)}=\dfrac{\tan x+\tan y}{\tan x-\tan y}

Step-by-step explanation:

To prove, \dfrac{\sin (x+y}{\sin (x-y)}=\dfrac{\tan x+\tan y}{\tan x-\tan y}.

L.H.S.=\dfrac{\sin (x+y}{\sin (x-y)}

Using trigonometric identity,

\sin (A+B)=\sin A.\cos B+\cos A.\sin B and

\sin (A-B)=\sin A.\cos B-\cos A.\sin B

=\dfrac{\sin x.\cos y+\cos x.\sin y}{\sin x.\cos y-\cos x.\sin y}

Dividing nemerator and denominator by \cos x.\cos y, we get

=\dfrac{\dfrac{\sin x}{\cos x} +\dfrac{\sin y}{\cos y}}{\dfrac{\sin x}{\cos x} -\dfrac{\sin y}{\cos y}}

=\dfrac{\tan x+\tan y}{\tan x-\tan y}

= R.H.S, proved.

Hence, \dfrac{\sin (x+y}{\sin (x-y)}=\dfrac{\tan x+\tan y}{\tan x-\tan y}

Similar questions