Math, asked by sairajsawant1904, 3 days ago

sin0.cosec0 + sin²0.cosec²0+_______+ sin⁹0.cosec⁹0=?​

Answers

Answered by yadavshrutishruti
4

Answer:

*I am using 'A' instead of Ø"

\huge\underline\mathfrak\purple{Explanation-}Explanation−

To prove :

\dfrac{SinA}{1-CosA}1−CosASinA = CosecA + CotA

Solution :

LHS : \dfrac{SinA}{1-CosA}1−CosASinA

★Rationalize it.

\implies⟹ \dfrac{SinA}{1-CosA}1−CosASinA × \dfrac{1+CosA}{1+CosA}1+CosA1+CosA

\implies⟹ \dfrac{SinA(1+CosA)}{(1-CosA)(1+CosA)}(1−CosA)(1+CosA)SinA(1+CosA)

By using,

★( a + b ) ( a - b ) = a² - b²

\implies⟹ \dfrac{SinA(1+CosA)}{1-{cos}^{2}A}1−cos2ASinA(1+CosA)

Also,

★Sin²A + Cos²A = 1

=> Sin²A = 1 - Cos²A

\implies⟹ \dfrac{SinA(1+CosA)}{{Sin}^{2}A}Sin2ASinA(1+CosA)

\implies⟹ \dfrac{\cancel{SinA}(1+CosA)}{{{Sin}^{\cancel{2}}A}}Sin2ASinA(1+CosA)

\implies⟹ \dfrac{1+CosA}{SinA}SinA1+CosA

\implies⟹ \dfrac{1}{SinA}+\dfrac{CosA}{SinA}SinA1+SinACosA

By using ratios of trigonometry :

★\dfrac{1}{SinA}SinA1 = CosecA

★ \dfrac{CosA}{SinA}SinACosA = CotA

\implies⟹ CosecA + CotA

Hence proved!

Please mark me brainliest answer

Similar questions