sin10sin50sin60sin70=root 3/16. prove
Attachments:
Answers
Answered by
82
This is a very interesting question!
sin10sin50sin60sin70
= [(√3)/2]sin10sin50sin70
= [(√3)/2]sin10(cos(-20) - cos120)/2
= [(√3)/2]sin10(cos20 - cos120)/2
= [(√3)/2](sin10cos20 - sin10cos120)/2
= [(√3)/2](sin30 + sin(-10) - 2sin10cos120)/4
= [(√3)/2](sin30 + sin(-10) + sin10)/4
= [(√3)/2](1/2)/4
= (√3)/16
Hope it helps!!!
sin10sin50sin60sin70
= [(√3)/2]sin10sin50sin70
= [(√3)/2]sin10(cos(-20) - cos120)/2
= [(√3)/2]sin10(cos20 - cos120)/2
= [(√3)/2](sin10cos20 - sin10cos120)/2
= [(√3)/2](sin30 + sin(-10) - 2sin10cos120)/4
= [(√3)/2](sin30 + sin(-10) + sin10)/4
= [(√3)/2](1/2)/4
= (√3)/16
Hope it helps!!!
ashu95:
hi
Answered by
14
Answer:
Step-by-step explanation:
sin10sin50sin60sin70
= [(√3)/2]sin10sin50sin70
= [(√3)/2]sin10(cos(-20) - cos120)/2
= [(√3)/2]sin10(cos20 - cos120)/2
= [(√3)/2](sin10cos20 - sin10cos120)/2
= [(√3)/2](sin30 + sin(-10) - 2sin10cos120)/4
= [(√3)/2](sin30 + sin(-10) + sin10)/4
= [(√3)/2](1/2)/4
= (√3)/16
Similar questions