Sin15/cosec75+sin72/ cot 18- tan33/cot57
Answers
Answered by
0
Step-by-step explanation:
Find the value of
cosec75
o
sec15
o
+
cos18
o
sin72
o
−
cot57
o
tan33
o
ANSWER
To find:
cosec75
∘
sec15
∘
+
cos18
∘
sin72
∘
−
cot57
∘
tan33
∘
=?
Solution:
cosec75
∘
sec15
∘
+
cos18
∘
sin72
∘
−
cot57
∘
tan33
∘
=
cosec75
∘
sec(90
∘
−75
∘
)
+
cos18
∘
sin(90
∘
−18
∘
)
−
cot57
∘
tan(90
∘
−57
∘
)
=
cosec75
∘
cosec75
∘
+
cos18
∘
cos18
∘
−
cot57
∘
cot57
∘
(∵sin(90
∘
−θ)=cosθ, sec(90
∘
−θ)=cosecθ, tan(90
∘
−θ)=cotθ),
=1+1−1
=2−1
=1
Similar questions