Math, asked by krishnavenidandupati, 9 months ago

sin2 35° + sin2 55°

Answers

Answered by abhi569
2

Answer:

1

Step-by-step explanation:

In trigonometry:

    sin(90 - A) = cosA

So, here, sin²35 = sin²(90 - 55)

                           = cos²55

Therefore,

⇒ sin²35 + sin²55

⇒ cos²55 + sin²55

⇒ 1                   { sin²A + cos²A =1}

Answered by Anonymous
7

{ \tt{ \large \underline{question \colon}}}

{ \rm{ {sin}^{2} 35 \degree +  {sin}^{2} 55 \degree}}

{ \tt{ \large \underline{to \: find \colon}}}

{ \rm{ { \tt{ \longrightarrow the \: value \: of}} \: {sin}^{2} 35 \degree +  {sin}^{2} 55 \degree}}

{ \tt{ \large \underline{solution \colon}}}

{ \rm{ {sin}^{2} 35 \degree +  {sin}^{2} 55 \degree}}

{ \rm{   =  {sin}^{2} 35 \degree +  {sin}^{2} 55 \degree}}

{ \rm{  =  {sin}^{2} 35 \degree +  {sin}^{2} (90 \degree  - 35 \degree)}}

{ \rm{ =  {sin}^{2} 35 \degree +  {cos}^{2} 35 \degree}}

{ \rm{ = 1}}

{ \rm{  so \:  the \: value \: of \: {sin}^{2} 35 \degree +  {sin}^{2} 55 \degree \: is = 1}}

──────────────────────────

{ \tt{ \large \underline{more \: info \colon}}}

{ \rm{(i)  {sin}^{2}  \theta +  {cos}^{2}  \theta = 1}}

{ \rm{(ii)  {sec}^{2}  \theta  -   {tan}^{2}  \theta = 1}}

{ \rm{(ii)  {cosec}^{2}  \theta  -   {cot}^{2}  \theta = 1}}

{ \rm{1. \: sin( 90 \degree -  \theta) = cos \theta}}

{ \rm{2. \: cos( 90 \degree -  \theta) = sin \theta}}

{ \rm{3. \: tan( 90 \degree -  \theta) = cot\theta}}

{ \rm{4. \: sec( 90 \degree -  \theta) = cosec\theta}}

{ \rm{5. \: cosec( 90 \degree -  \theta) = sec\theta}}

{ \rm{6. \: cot( 90 \degree -  \theta) = tan\theta}}

Similar questions