Math, asked by jaipalbachles387, 1 year ago

sin2 A.tanA + cos2 A.cotA +2sinA.cosA = tanA + cot A

prove it

Answers

Answered by narayanamurthy
18
Hope this will help u!!!!
Attachments:

narayanamurthy: plz mark my answer as brainliest
Answered by amitnrw
36

Sin²A.TanA  + Cos²A.CotA  + 2SinA.CosA  = TanA + CotA

Step-by-step explanation:

Sin²A.TanA  + Cos²A.CotA  + 2SinA.CosA  = TanA + CotA

LHS

= Sin²A.TanA  + Cos²A.CotA  + 2SinA.CosA

using TanA = SinA/CosA    & CotA = CosA/SinA

= Sin²A.SinA/CosA  + Cos²A.CosA/SinA  + 2SinA.CosA

= Sin³A/CosA  + Cos³A./SinA  + 2SinA.CosA

= ( Sin⁴A  + Cos⁴A  + 2Sin²A.Cos²A )/CosASinA

= ( (Sin²A)²  + (Cos²A)²  + 2Sin²A.Cos²A )/CosASinA

using a² + b² + 2ab = (a + b)²

a = Sin²A  & b = Cos²A

= ((Sin²A)  + (Cos²A))²/CosA.SinA

using Sin²A + Cos²A = 1

= 1/CosA.SinA

= (Sin²A + Cos²A)/CosASinA

= Sin²A/CosASinA + Cos²A/CosASinA

= SinA/CosA  + CosA/SinA

= TanA  + CotA

= RHS

QED

Proved

Learn more:

If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in

https://brainly.in/question/7871635

Express tan θ in terms of tan α, if sin(θ + α) = cos (θ + α)

https://brainly.in/question/6964148

Similar questions