Math, asked by abhijathsv, 1 year ago

sin2θ.sin2φ + sin2θ.cos2φ +cos2θ.sin2φ + cos2θ.cos2φ+3cosec4θ -3cot4θ -6cot2θ


Masrath: sin2 teta where 2 indicates square?
abhijathsv: yes

Answers

Answered by ARoy
1
sin²θsin²Ф+sin²θcos²Ф+cos²θsin²Ф+cos²θcos²Ф+3cosec⁴θ-3cot⁴θ-6cot²θ
=sin
²θsin²Ф+cos²θsin²Ф+sin²θcos²Ф+cos²θcos²Ф+3/sin⁴θ-3cos⁴θ/sin⁴θ -6cos²θ/sin²θ
=sin
²Ф(sin²θ+cos²θ)+cos²Ф(sin²θ+cos²θ)+3(1/sin⁴θ-cos⁴θ/sin⁴θ   -2cos²θ/sin²θ) 
=sin²Ф+cos²Ф+3[(1-cos⁴θ-2cos²θsin²θ)/sin⁴θ] [∵, sin²θ+cos²θ=1]
=1+3[{1-cos
⁴θ-2cos²θ(1-cos²θ)}/sin⁴θ]
=1+3[(1-cos
⁴θ-2cos²θ+2cos⁴θ)/sin⁴θ]
=1+3[(1+cos
⁴θ-2cos²θ)/sin⁴θ]
=1+3[{(1)
²-2.1.cos²θ+(cos²θ)²}/sin⁴θ]
=1+3[(1-cos
²θ)²/sin⁴θ]
=1+3[(sin
²θ)²/sin⁴θ]
=1+3(sin
⁴θ/sin⁴θ)
=1+3
=4
Similar questions