Sin20°*sin40°*sin30°*sin80°=√3/2
Answers
Answered by
1
There is a mistake in the given question. There should be a factor of 8 on the LHS...
LHS = 8 * Sin20 Sin40 Sin30 Sin80
= 8 * sin20 sin30 * sin40 * sin80
= 4 * (Cos10 - cos50) * cos50 * sin80
= 2 * (cos10 cos50 - cos²50) * sin80
= 2 * [ (Cos 60+cos40) - (cos100 +1) ] * sin80
= [ 2 cos40 - 2 cos100 - 1 ] * sin80
= 2 cos40 sin80 - 2 cos100 sin80 - sin80
= Sin120 + sin40 + 2 sin10 sin 80 - sin80
= √3/2 + sin40 + cos70 - cos90 - sin80
= √3 /2 + sin 40 + sin20 - sin80
= √3 /2 + sin40 - sin80 + sin20
= √3 /2 + 2 sin(-20) cos60 + sin20
= √3 /2 - sin20 + sin 20
= √3 /2
= RHS
LHS = 8 * Sin20 Sin40 Sin30 Sin80
= 8 * sin20 sin30 * sin40 * sin80
= 4 * (Cos10 - cos50) * cos50 * sin80
= 2 * (cos10 cos50 - cos²50) * sin80
= 2 * [ (Cos 60+cos40) - (cos100 +1) ] * sin80
= [ 2 cos40 - 2 cos100 - 1 ] * sin80
= 2 cos40 sin80 - 2 cos100 sin80 - sin80
= Sin120 + sin40 + 2 sin10 sin 80 - sin80
= √3/2 + sin40 + cos70 - cos90 - sin80
= √3 /2 + sin 40 + sin20 - sin80
= √3 /2 + sin40 - sin80 + sin20
= √3 /2 + 2 sin(-20) cos60 + sin20
= √3 /2 - sin20 + sin 20
= √3 /2
= RHS
kvnmurty:
:-)
Answered by
1
Sin20°*sin40°*sin30°sin80°
=sin30°*sin40°*sin60°sin80°
=1/2sin*sin(60°-40°)*sin(60°+30°)
= 1/2°sin20°*(sin^2 60°-sin^2 20°)°=) sin(a-b) *sin(a+b) =sin^2a-sin^2b
=1/2*sin20°*{(√3/2)^2-sin^2 20°}
=1/2sin20°°*3/4-sin^2 20°.
=1/2(3sin20°-4sin^3 20°) /4=) 3sin-4sin^3A/4=sin3A
=1/2(sin3*20°)
=sin(3*20°)
=Sin60°
=√3/2Ans
=sin30°*sin40°*sin60°sin80°
=1/2sin*sin(60°-40°)*sin(60°+30°)
= 1/2°sin20°*(sin^2 60°-sin^2 20°)°=) sin(a-b) *sin(a+b) =sin^2a-sin^2b
=1/2*sin20°*{(√3/2)^2-sin^2 20°}
=1/2sin20°°*3/4-sin^2 20°.
=1/2(3sin20°-4sin^3 20°) /4=) 3sin-4sin^3A/4=sin3A
=1/2(sin3*20°)
=sin(3*20°)
=Sin60°
=√3/2Ans
Similar questions