sin²A/2+sin²B/2-sin²C/2=
1-2cosA/2cosB/2cosC/2
Answers
Answer:
given A+B+C=180
LHS SIN²A/2+SIN²B/2+SIN²C/2
1/2(2SIN²A/2+2SIN²B/2+2SIN²C/2)
1/2(1-COSA+1-COSB+1-COSC)
1/2(3-(COSA+COSB+COSC)
1/2(3- (2COS (A+B/2)COS(A-B/2)+COSC)
1/2(3- (2COS(90-C/2)COS(A+B/2)+C0SC)
1/2(3- (2SINC/2COS(A-B/2)+1-2SIN²C/2)
1/2(3-1-2SINC/2(COS(A+B/2)-SINC/2)
1/2(2-2SINC/2(COS(A-B/2)-SIN (90-A+B/2) (SIN90-Ф)= COSФ)
1/2(2-2SINC/2(COS(A-B/2)-COS(A+B/2)
1/2(2-2SINC/2(2SINA/2SINB/2)
1/2(2-4SINA/2SINB/2SINC/2)
1-2SINA/2SINB/2SINC/2
RHS
Answer:
given A+B+C=180
LHS SIN²A/2+SIN²B/2+SIN²C/2
1/2(2SIN²A/2+2SIN²B/2+2SIN²C/2)
1/2(1-COSA+1-COSB+1-COSC)
1/2(3-(COSA+COSB+COSC)
1/2(3- (2COS (A+B/2)COS(A-B/2)+COSC)
1/2(3- (2COS(90-C/2)COS(A+B/2)+C0SC)
1/2(3- (2SINC/2COS(A-B/2)+1-2SIN²C/2)
1/2(3-1-2SINC/2(COS(A+B/2)-SINC/2)
1/2(2-2SINC/2(COS(A-B/2)-SIN (90-A+B/2) (SIN90-Ф)= COSФ)
1/2(2-2SINC/2(COS(A-B/2)-COS(A+B/2)
1/2(2-2SINC/2(2SINA/2SINB/2)
1/2(2-4SINA/2SINB/2SINC/2)
1-2SINA/2SINB/2SINC/2
RHS
Step-by-step explanation: