sin²A+cos²B =1 , A=30 find B
Answers
Answered by
50
Answer:
- The value of B = 30°
Step-by-step explanation:
Given that:
- sin²A + cos²B = 1
- The value of A = 30°
To Find:
- The value of B.
Substituting the value of A:
⇒ sin²30° + cos²B = 1
⇒ (1/2)² + cos²B = 1
⇒ 1/4 + cos²B = 1
⇒ cos²B = 1 - 1/4
⇒ cos²B = 4/4 - 1/4
⇒ cos²B = 3/4
⇒ cos B = √(3/4)
⇒ cos B = √3/2
- [∵ cos 30° = √3/2]
⇒ cos B = cos 30°
⇒ B = 30°
Trigonometric ratio:
- sin 0° = 0
- sin 30° = 1/2
- sin 45° = 1/√2
- sin 60° = √3/2
- sin 90° = 1
- cos 0° = 1
- cos 30° = √3/2
- cos 45° = 1/√2
- cos 60° = 1/2
- cos 90° = 0
- tan 0° = 0
- tan 30° = 1/√3
- tan 45° = 1
- tan 60° = √3
- tan 90° = undefined
Answered by
209
Answer:
B = 30°
Step-by-step explanation:
Question:
Answer:
As angle a is 30°,
SinA can be written as Sin30°
Substituting A= 30:
+ Cos²B = 1
+ Cos²B = 1
Cos²B = 1 -
Cos²B =
Take square root:
CosB =
We know that:
Cos30° =
Therefore,
CosB = Cos30°
B = 30°
Know more:
Similar questions