Math, asked by ry8230748, 3 months ago

sin2A +sin2B + sin2C =4sinA SinBSinC​

Answers

Answered by mathdude500
2

Appropriate Question :-

 \sf \: If \: A + B + C = \pi

Prove that

\sf \: sin2A + sin2B + sin2C = 4sinAsinBsinC

Identities Used :-

\boxed{ \red{ \bf \: sinx + siny = 2sin\bigg(\dfrac{x + y}{2}\bigg) cos\bigg(\dfrac{x - y}{2}  \bigg)}}

\boxed{ \red{ \bf \:sin(\pi - x) = sinx}}

\boxed{ \red{ \bf \:cos(x - y) - cos(x + y) = 2sinxsiny}}

\boxed{ \red{ \bf \:sin2x = 2sinxcosx}}

\large\underline{\bf{Solution-}}

\rm :\longmapsto\:\sf \: sin2A + sin2B + sin2C

 \sf \:  =  \:  \:  \:(sin2A + sin2B) + sin2C

 \sf \:  =  \:  \:  \:2sin\bigg(\dfrac{2A + AB}{2}  \bigg)cos\bigg(\dfrac{2A - 2B}{2}  \bigg) + sin2C

 \sf \:  =  \:  \:  \:2sin(A + B)cos(A - B) + sin2C

 \sf \:  =  \:  \:  \:2sin(\pi - C)cos(A - B) + sin2C

 \sf \:  =  \:  \:  \:2sinCcos(A - B) + 2sinCcosC

 \sf \:  =  \:  \:  \:2sinC\bigg(cos(A - B) + cosC \bigg)

 \sf \:  =  \:  \:  \:2sinC\bigg(cos(A - B) + cos(\pi - (A + B))\bigg)

 \sf \:  =  \:  \:  \:2sinC\bigg(cos(A - B)  -  cos(A + B)\bigg)

 \sf \:  =  \:  \:  \:2sinC(2sinAsinB)

 \sf \:  =  \:  \:  \:4sinCsinAsinB

 \sf \:  =  \:  \:  \:4sinAsinBsinC

Hence,

\purple{\boxed{{ \bf \:sin2A + sin2B + sin2C = 4sinAsinBsinC}}}

Additional Information :-

Trigonometry Formulas

sin(−θ) = −sin θ

cos(−θ) = cos θ

tan(−θ) = −tan θ

cosec(−θ) = −cosecθ

sec(−θ) = sec θ

cot(−θ) = −cot θ

Product to Sum Formulas

sin x sin y = 1/2 [cos(x–y) − cos(x+y)]

cos x cos y = 1/2[cos(x–y) + cos(x+y)]

sin x cos y = 1/2[sin(x+y) + sin(x−y)]

cos x sin y = 1/2[sin(x+y) – sin(x−y)]

Sum to Product Formulas

sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]

sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]

cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]

cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]

Sum or Difference of angles

cos (A + B) = cos A cos B – sin A sin B

cos (A – B) = cos A cos B + sin A sin B

sin (A+B) = sin A cos B + cos A sin B

sin (A -B) = sin A cos B – cos A sin B

tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]

tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]

cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]

cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]

cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A

sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A

Multiple and Submultiple angles

sin2A = 2sinA cosA = [2tan A /(1+tan²A)]

cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]

tan 2A = (2 tan A)/(1-tan²A)

Similar questions