Math, asked by monicaanand2644, 1 year ago

Sin2x=1/5 then sinx + cosx =

Answers

Answered by BEJOICE
15

{( \sin(x) +  \cos(x) ) }^{2}   =  { \sin }^{2}x +  { \cos}^{2} x  + 2 \sin(x)  \cos(x)   \\   {( \sin(x) +  \cos(x) ) }^{2}   = 1 +  2 \sin(x)  \cos(x)  \\ {( \sin(x) +  \cos(x) ) }^{2}   = 1 +   \sin(2x)  \\ {( \sin(x) +  \cos(x) ) }^{2}    = 1 +  \frac{1}{5}  =  \frac{6}{5}  \\ therefore \\  \sin(x) +  \cos(x) =  \sqrt{ \frac{6}{5} }
Answered by aquialaska
5

Answer:

Value of   sin\,x+cos\,x\:is\:\pm\sqrt{\frac{6}{5}}

Step-by-step explanation:

Given:

sin 2x = 1/5

To find: sin x + cos x

We use the identity,

( a + b )² = a² + b² +2ab

put a = sin and b = cos x

( sin x + cos x )² = (sin x)² + (cos x)² +2(sin x)(cos x)

( sin x + cos x )² = sin² x + cos² x + 2 sin x cos x

( sin x + cos x )² = 1 + sin 2x   (sin² x + cos² x = 1 and 2 sin x cos x = sin 2x)

( sin x + cos x )² = 1 + 1/5

( sin x + cos x )² = 6/5

sin x + cos x = \pm\sqrt{\frac{6}{5}}

Therefore, Value of   sin\,x+cos\,x\:is\:\pm\sqrt{\frac{6}{5}}

Similar questions