Math, asked by humhimvanbawi, 1 month ago

sin30-sin90+2cos0/tan30 tan60
sin30=1/2
sin90=1
cos0=1
tan30=1/√2
tan60=√3​

Answers

Answered by Anonymous
40

Answer:

3/2

Step-by-step explanation:

As per the information provided in the question, We have:

  • sin30 - sin90 + 2cos0/tan30 tan60

We are asked to find the value of it.

In order to find the value of sin30 - sin90 + 2cos0/tan30 tan60. We need to put the values and simplify it.

sin30 - sin90 + 2cos0/tan30 tan60.

Where,

  • sin30° = 1/2
  • sin90° = 1
  • cos0° = 1
  • tan30° = 3/√3
  • tan60° = √3

By substituting the values.

\longmapsto \rm \dfrac{\dfrac{1}{2} - 1 + 2(1)}{\dfrac{\sqrt{3}}{3} \sqrt{3}}

On simplifying,

\longmapsto \rm \dfrac{ - \dfrac{1}{2} + 2}{\dfrac{3}{3}}

\longmapsto \rm \dfrac{ - \dfrac{1}{2} + 2}{1}

\longmapsto \rm \dfrac{ \dfrac{ - 1 + 4}{2} }{1}

\longmapsto \rm \dfrac{ \dfrac{ 3}{2} }{1}

\longmapsto \rm  \dfrac{ 3}{2}

∴ sin30 - sin90 + 2cos0/tan30 tan60 = 3/2

More to know :

\bullet\:\sf Trigonometric\:Values :\\\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D{e}fined\end{tabular}}

Answered by TYKE
5

Question :

sin30-sin90+2cos0/tan30 tan60

Formula Used :

sin30=1/2

sin90=1

cos0=1

tan30=1/√3

tan60=√3

Solution :

 \sf \looparrowright  \frac{sin  \: 30 \degree - sin \: 90 \degree + 2cos \: 0 \degree}{ \tan \:30 \degree \times tan \: 60  \degree}

Putting the values given in the formula we get

 \sf \looparrowright \frac{ \frac{1}{2}  - 1 + 2 \times 1}{ \frac{1}{ \sqrt{3}}  \times  \sqrt{3} }

 \sf \looparrowright \frac{ \frac{1 - 2}{2} +2 }{  \frac{ \sqrt{3} }{ \sqrt{3} }  }

 \sf \looparrowright \frac{ \frac{ - 1 + 4}{2} }{ \frac{ \sqrt{3} }{ \sqrt{3} } }

 \sf \looparrowright  \frac{ \frac{3}{2} }{1}

 \sf \looparrowright \frac{3}{2}

So the value is 3/2

KNOW MORE :

Square Relations :

  • sin² θ + cos² θ = 1

  • sec² θ – tan² θ = 1

  • cosec² θ – cot² θ= 1

Quotient Relations :

  • sin θ× cosec θ = 1

  • cos θ × sec θ = 1

  • tan θ × cot θ = 1

Basic :

  • sin ∅ = P/H

  • cos ∅ = B/H

  • tan ∅ = P/B

  • cot = B/P

  • sec = H/B

  • cosec = H/P

Here,

P refers Perpendicular or Height

B refers Base

H refers Hypotentuse

Trigonometric value of standard angles,

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Regards

# bebrainly

Similar questions