Math, asked by YoBosss450, 6 months ago

sin30° + tan45° - cosec60° / sec30° + cos60° + cot45° evaluate. Plea

se solve this for 100 points.

Answers

Answered by Uriyella
10

Given :

  • An equation,  \bf  \dfrac{sin {30}^{ \circ}  + tan {45}^{ \circ}  - cosec {60}^{ \circ} }{sec {30}^{ \circ} + cos {60}^{ \circ}  + cot {45}^{ \circ}}

What to do ?

  • To evaluate the given equation,  \bf \dfrac{sin {30}^{ \circ}  + tan {45}^{ \circ}  - cosec {60}^{ \circ} }{sec {30}^{ \circ} + cos {60}^{ \circ}  + cot {45}^{ \circ}}

Solution :

Given equation,

 \bf \implies\dfrac{sin {30}^{ \circ}  + tan {45}^{ \circ}  - cosec {60}^{ \circ} }{sec {30}^{ \circ} + cos {60}^{ \circ}  + cot {45}^{ \circ}  }

We know that,

 \bf \bullet \:  \:  \: sin {30}^{ \circ}  =  \dfrac{1}{2}  \\  \\   \bf \bullet \:  \:  \: tan {45}^{ \circ}  = 1 \\  \\  \bf \bullet \:  \:  \: cosec {60}^{ \circ}  =  \dfrac{2}{ \sqrt{3} }  \\  \\  \bf \bullet \:  \:  \: sec {30}^{ \circ} =  \dfrac{2}{ \sqrt{3} }   \\  \\  \bf \bullet \:  \:  \: cos {60}^{ \circ}  =  \dfrac{1}{2}  \\  \\  \bf \bullet \:  \:  \: cot {45}^{ \circ}  = 1

Substitute all the values in the given equation.

\bf \implies  \dfrac{  \bigg(\dfrac{1}{2}  \bigg)+( 1) -   \bigg(\dfrac{2}{ \sqrt{3} } \bigg)}{ \bigg( \dfrac{2}{ \sqrt{3} } \bigg) +  \bigg( \dfrac{1}{2} \bigg) + 1}  \\  \\  \\ \bf \implies  \dfrac{ \dfrac{1}{2} + 1 -  \dfrac{2}{ \sqrt{3} }  }{ \dfrac{2}{ \sqrt{3} }+  \dfrac{1}{2} + 1 }  \\  \\  \\ \bf \implies  \dfrac{ \dfrac{1 + 2}{2} -  \dfrac{2}{ \sqrt{3}}}{ \dfrac{2}{ \sqrt{3}} +  \dfrac{1 + 2}{2} }

\bf \implies  \dfrac{ \dfrac{3}{2} -  \dfrac{2}{ \sqrt{3}}}{ \dfrac{2}{ \sqrt{3}} +  \dfrac{3}{2} }  \\  \\  \\ \bf \implies  \dfrac{ \bigg( \dfrac{3 \sqrt{3}  - 4}{2 \sqrt{3} }  \bigg)}{ \bigg( \dfrac{4 + 3 \sqrt{3}}{2 \sqrt{3} }  \bigg)} \\  \\  \\  \bf \implies \dfrac{(3 \sqrt{3}- 4)}{(4 + 3 \sqrt{3})} \times  \dfrac{ \not2\sqrt{3} }{ \not2\sqrt{3}}

\bf \implies  \dfrac{(3 \sqrt{3} - 4)}{(4 + 3 \sqrt{3})}  \\  \\  \\ \bf \implies  \dfrac{(3 \sqrt{3} - 4)}{(3 \sqrt{3} + 4)}  \times  \dfrac{(3 \sqrt{3} - 4)}{(3 \sqrt{3} - 4)}  \\  \\  \\ \bf \implies  \dfrac{ {(3 \sqrt{3} - 4)}^{2} }{(3 \sqrt{3} + 4)(3 \sqrt{3} - 4)}

Using two identities in the numerator and the denominator,

  • (a - b)² = a² - 2ab + b²
  • (a + b)(a - b) = a² - b²

\bf \implies  \dfrac{ {(3 \sqrt{3})}^{2} - 2(3 \sqrt{3})(4) +  {(4)}^{2}}{ {(3 \sqrt{3})}^{2} -  {(4)}^{2} }  \\  \\  \\ \bf \implies  \dfrac{9 \times 3 - 24 \sqrt{3} + 16}{9 \times 3 - 16}  \\  \\  \\ \bf \implies  \dfrac{27 - 24 \sqrt{3} + 16}{27 - 16}  \\  \\  \\ \bf \implies  \dfrac{27 + 16 - 24 \sqrt{3}}{11}  \\  \\  \\ \bf \implies  \dfrac{43 - 24 \sqrt{3} }{11}

Hence,

 \bf \dfrac{sin {30}^{ \circ}  + tan {45}^{ \circ}  - cosec {60}^{ \circ} }{sec {30}^{ \circ} + cos {60}^{ \circ}  + cot {45}^{ \circ}} = \dfrac{43 - 24 \sqrt{3} }{11}


BrainlyPopularman: Nice
Uriyella: Thank you ! :)
Answered by Anonymous
53

ɢɪᴠᴇɴ:-

  • \tt\frac{(sin30 + tan45 - cosec60)}{(sec30 + cos60 + cot45)}

ᴛᴏ ᴅᴏ:-

  • Evaluate

ꜱᴏʟᴜᴛɪᴏɴ:-

Substituting the values in the given equation,

\begin{lgathered}\begin{lgathered}\\\end{lgathered}\end{lgathered}

:\implies\tt\frac{ \frac{1}{2}+1- \frac{2}{ \sqrt{3}} }{ \frac{2}{ \sqrt{3}}+ \frac{1}{2}+1}

\begin{lgathered}\begin{lgathered}\\\end{lgathered}\end{lgathered}

:\implies\tt\frac{ \sqrt{3}+2 \sqrt{3} - 4 }{4 + \sqrt{3} + 2 \sqrt{3} }

\begin{lgathered}\begin{lgathered}\\\end{lgathered}\end{lgathered}

:\implies\tt\frac{ 3 \sqrt{3} - 4 }{4 + 3 \sqrt{3} }

Rationalising the denominator,

\begin{lgathered}\begin{lgathered}\\\end{lgathered}\end{lgathered}

:\implies\tt\frac{ 3 \sqrt{3} - 4 }{4 + 3 \sqrt{3} }\times \frac{ 3 \sqrt{3} - 4 }{3 \sqrt{3} - 4 }

\begin{lgathered}\begin{lgathered}\\\end{lgathered}\end{lgathered}

:\implies\tt\frac{(3 \sqrt{3} - 4 )^2}{ (3 \sqrt{3} )^2-(4)^2 }

\begin{lgathered}\begin{lgathered}\\\end{lgathered}\end{lgathered}

:\implies\tt\frac{27+16-24 \sqrt{3} }{27-16}

\begin{lgathered}\begin{lgathered}\\\end{lgathered}\end{lgathered}

:\implies\bf\frac{43-24 \sqrt{3} }{11}

\begin{lgathered}\begin{lgathered}\\\end{lgathered}\end{lgathered}

━━━━━━━━━━━━━━━━━━━━━━

\sf \large \pink{Have\;a\;Look!!!}

\begin{lgathered}\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 & \sqrt{3} & \rm Not \: De fined \\ \\ \rm cosec A & \rm Not \: De fined & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm Not \: De fined \\ \\ \rm cot A & \rm Not \: De fined & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}\end{lgathered}


BrainlyPopularman: Nice
Similar questions