Math, asked by pearlpanani, 7 months ago

Sin³A + cos³A/ sin A + cos A=cosecA*secA-1/cosecAcseA​

Answers

Answered by mantu9000
1

We have to prove that, \dfrac{\sin^3 A+\cos^3 A}{\sin A+\cos A} =\dfrac{\csc A\sec A-1}{\csc A\sec A}.

L.H.S. = \dfrac{\sin^3 A+\cos^3 A}{\sin A+\cos A}

Using the algebraic identity:

a^{3} +b^{3} =(a+b)(a^2-ab+b^2)

= \dfrac{(\sin A+\cos A)(\sin^2 A-\sin A\cos A+\cos^2 A)}{\sin A+\cos A}

= \sin^2 A-\sin A\cos A+\cos^2 A

Using the trigonometric identity:

\sin^2 A+\cos^2 A=1

= 1-\sin A\cos A

= 1-\dfrac{1}{\csc A} \dfrac{1}{\sec A}

= \dfrac{\csc A\sec A-1}{\csc A\sec A}

= L.H.S., proved.

Hence, \dfrac{\sin^3 A+\cos^3 A}{\sin A+\cos A} =\dfrac{\csc A\sec A-1}{\csc A\sec A}, proved.

Similar questions