Math, asked by Akashtiwari9794, 1 year ago

Sin3A-sinA/cos3A+cosA =tanA

Answers

Answered by sandy1816
5

Step-by-step explanation:

sin3A-sinA/cos3A+CosA

=2cos2AsinA/2cos2AcosA

=sinA/cosA

=tanA

Answered by JeanaShupp
6

Trigonometry is a branch of mathematics that studies relationships between the side lengths and the angles of triangles

Step-by-step explanation:

To prove: \dfrac{\sin 3A- \sin A}{\cos3A+\cos A} =\tan A

Taking Left Hand Side we have

\dfrac{\sin 3A- \sin A}{\cos3A+\cos A}

Now as we know

\sin x - \sin y = 2 \cos \dfrac{x+y}{2} \sin \dfrac{x-y}{2} \\\\\text {and} \\\\ \cos x - \cos y = 2 \cos \dfrac{x+y}{2} \cos \dfrac{x-y}{2}

Applying the formula we get

\dfrac{\sin 3A- \sin A}{\cos3A+\cos A}= \dfrac{2 \cos \dfrac{3A+A}{2} \sin \dfrac{3A-A}{2} }{2 \cos \dfrac{3A+A}{2} \cos \dfrac{3A-A}{2}} =\dfrac{\cos 2A \sin A}{\cos 2A \cos A} = \dfrac{\sin A}{\cos A} =\tan A

Hence proved

#Learn more

Sin x + sin 3x + sin 5x = 0

brainly.in/question/712099

Similar questions