Sin40-cos70=root3cos80
Answers
Answered by
106
LHS =sin40-cos70
=sin40-cos(90-20)
=sin40-sin20
now use formula
sinA-sinB=2cos(A+B)/2.sin(A-B)/2
hence.
sin40-sin20=2cos30.sin10
=2 x √3/2 x cos80
=√3cos80° =RHS
=sin40-cos(90-20)
=sin40-sin20
now use formula
sinA-sinB=2cos(A+B)/2.sin(A-B)/2
hence.
sin40-sin20=2cos30.sin10
=2 x √3/2 x cos80
=√3cos80° =RHS
abhi178:
please mark as brainliest
Answered by
20
Answer:
Step-by-step explanation:
LHS= sin40 - cos70
= sin40 - cos(90-20)
= sin40 - sin20
(Using identity sinC - cosD = 2Cos(C+D/2). Sin(C-D/2), we get
2cos(60/2).sin(20/2)
=2cos30.sin10
=2cos30.sin(90-80)
=2×root3/2.cos80
=root3.cos80
Hence proved
I hope it helps
Similar questions