[(sin4a*cos2a)-(cos4a*sin2a)]/[cos²a-sin²a]=tan2a
Answers
Answered by
0
cos 4 A - Cos2A
= (cos2A)2 - (cosA)2
= (1- sin2A)2 - cos2A
= 1 + sin4A - 2sin2A -( 1- sin2A)
=1+ sin4A - 2 sin2A -1 + sin2A
=sin4A - sin2A
since LHS = RHS
hence proved.
Answered by
0
Step-by-step explanation:
To prove:
\bold{\cos ^{4} A-\cos ^{2} A=\sin ^{4} A-\sin ^{2} A}
Solution:
Consider the LHS,
\cos ^{4} A-\cos ^{2} A=\left(\cos ^{2} A\right)^{2}-(\cos A)^{2}
By formula, \bold{\sin ^{2} \theta+\cos ^{2} \theta=1}
\cos ^{2} \theta=1-\sin ^{2} \theta Substitute in the above equation, we get
\cos ^{4} A-\cos ^{2} A=\left(1-\sin ^{2} A\right)^{2}-(\cos A)^{2}
=1+\sin ^{4} A-2 \sin ^{2} A-\left(1-\sin ^{2} A\right)
=1+\sin ^{4} A-2 \sin ^{2} A-1+\sin ^{2} A
=\sin ^{4} A-\sin ^{2} A=\mathrm{RHS}
Hence proved.
Similar questions