Math, asked by Victinee, 9 months ago

(sin⁴A - cos⁴A + 1) cosec ² A = 2​

Answers

Answered by pulakmath007
22

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1.

 {sin}^{2} \theta \:  +  {cos}^{2}  \theta \:  = 1

2.

 \displaystyle \: cosec \theta \:  =  \frac{1}{sin \theta \: }

3.

 {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

TO PROVE

( {sin}^{4} A -  {cos}^{4} A + 1) \times {{cosec} }^{2}   A = 2

EVALUATION

( {sin}^{4} A -  {cos}^{4} A + 1) \times {{cosec} }^{2}   A

 = \{ \{ ( { {sin}^{2}A) }^{2}   - ({{cos}^{2}A) }^{2} \} + 1 \} \  \times {{cosec} }^{2}   A

 = \{  ({sin}^{2} A +   {cos}^{2} A)({sin}^{2} A  -    {cos}^{2} A) + 1 \} \times {cosec }^{2}  \:A

 = ({sin}^{2} A  -    {cos}^{2} A + 1 ) \times {cosec }^{2}  \:A

 = \displaystyle \: 2 {sin}^{2} A   \times  \frac{1}{{sin}^{2}  \: A}

 = 2

Similar questions