sin⁴A—cos⁴A is equal to :
(A) 1
(B) 1—2cos²A
(c) 0
(D) tan²A
Answers
Answered by
7
Sin⁴a - cos⁴a = (sin²a + cos²a)(sin²a - cos²a ) = 1(sin²a - cos²a) = (sin²a - cos²a) = (1 - cos²a - cos²a) = 1 - 2cos²a
answer is (b)
answer is (b)
Answered by
20
Option B is correct.
1-2cos²A
Solution:
sin⁴A - cos⁴A
(Sin²A)² - ( cos²A)²
[ (a²-b²)= (a+b) (a-b)
(Sin²A+cos²A) (Sin²A- cos²A)
1 × (1-cos²A- cos²A)
[ (Sin²A+cos²A)=1 , sin²A= 1-cos²A]
1-2cos²A
==================================================================================
Hope this will help you......
1-2cos²A
Solution:
sin⁴A - cos⁴A
(Sin²A)² - ( cos²A)²
[ (a²-b²)= (a+b) (a-b)
(Sin²A+cos²A) (Sin²A- cos²A)
1 × (1-cos²A- cos²A)
[ (Sin²A+cos²A)=1 , sin²A= 1-cos²A]
1-2cos²A
==================================================================================
Hope this will help you......
Similar questions