Math, asked by Anonymous, 7 months ago

sin4theta + cos4theta/1-2sin2thetacos2theta=1​

Answers

Answered by prince5132
6

CORRECT QUESTION :-

 \\ \\ \mapsto \sf \: Prove \:  That  \:  \:  \dfrac{ \sin ^{4} \theta +  \cos ^{4} \theta }{1 - 2 \sin ^{2}  \theta \:  \cos ^{2} \theta  }  = 1\\ \\

GIVEN :-

\\ \\ \mapsto \sf \: \dfrac{ \sin ^{4} \theta +  \cos ^{4} \theta }{1 - 2 \sin ^{2}  \theta \:  \cos ^{2} \theta  }  = 1\\ \\

TO FIND :-

\\

• L.H.S = R.H.S

\\

SOLUTION :-

\\ \\ \mapsto \sf    \dfrac{ \sin ^{4} \theta +  \cos ^{4} \theta }{1 - 2 \sin ^{2}  \theta \:  \cos ^{2} \theta  }  = 1 \\ \\

sinϴ + cosϴ Can be written as (sin²ϴ)² + (cos²ϴ)².

\\ \\ \mapsto \sf  \dfrac{( \sin ^{2} \theta) ^{2}  +  (\cos ^{2} \theta ) ^{2} }{1 - 2 \sin ^{2}  \theta \:  \cos ^{2} \theta  }  = 1\\ \\

By using identity :- a² + b² = (a + b)² -2ab.

\\ \\ \mapsto \sf  \dfrac{(\sin ^{2} \theta  +  \cos ^{2} \theta ) ^{2}   \: -2 \sin ^{2}  \theta \:  \cos ^{2}   \theta }{1 - 2 \sin ^{2}  \theta \:  \cos ^{2} \theta  }  = 1 \\ \\

By using identity :- sin²ϴ + cos²ϴ = 1.

\\ \\ \mapsto \sf   \dfrac{ \cancel{1   \: -2 \sin ^{2}  \theta \:  \cos ^{2}   \theta} }{ \cancel{1 - 2 \sin ^{2}  \theta \:  \cos ^{2} \theta } }  = 1  \\  \\  \\  \mapsto \sf \: 1 = 1\\ \\

L.H.S = R.H.S

HENCE VERIFIED

ADDITIONAL INFORMATION :-

Some Identities:-

 \mapsto \sf \tan (A + B) = \dfrac{\tan A + \tan B}{1 - \tan A \: \tan B} \\ \\ \\ \mapsto \sf \tan (A - B) = \dfrac{\tan A - \tan B}{1 + \tan A \: \tan B} \\ \\ \\ \mapsto \sf \sin^{2} \theta + \cos^{2} \theta = 1 \\ \\ \\ \mapsto \sf \sin^{2} \theta = 2 \sin \theta \ \cos \theta

Similar questions