Math, asked by siddharth3510, 7 months ago

sin4theta - cos4theta​=

Answers

Answered by STarAK
29

sin4A - cos4A = ____

sin4A - (1 - sin2A)2

sin4A - 1 + sin2A + 2.sinA.

...........

Answered by Anonymous
3

Answer:

sin

4

θ+cos

4

θ

=1

Step-by-step explanation:

\begin{gathered}LHS= \frac{sin^{4}\theta+cos^{4}\theta}{1-2sin^{2}\theta cos^{2}\theta}\\=\frac{(sin^{2}\theta)^{2}+(cos^{2}\theta)^{2}}{1-2sin^{2}\theta cos^{2}\theta}\\=\frac{(sin^{2}\theta+cos^{2}\theta)^{2}-2sin^{2}\theta cos^{2}\theta }{1-2sin^{2}\theta cos^{2}\theta}\\\end{gathered}

LHS=

1−2sin

2

θcos

2

θ

sin

4

θ+cos

4

θ

=

1−2sin

2

θcos

2

θ

(sin

2

θ)

2

+(cos

2

θ)

2

=

1−2sin

2

θcos

2

θ

(sin

2

θ+cos

2

θ)

2

−2sin

2

θcos

2

θ

/* By algebraic identity:

i )a²+b² = (a+b)²-2ab

By Trigonometric identity:

ii) sin²A+cos²A = 1 */

\begin{gathered}= \frac{1-2sin^{2}\theta cos^{2}\theta }{1-sin^{2}\theta cos^{2}\theta }\\=1 \\=RHS\end{gathered}

=

1−sin

2

θcos

2

θ

1−2sin

2

θcos

2

θ

=1

=RHS

Therefore,

\frac{sin^{4}\theta+cos^{4}\theta}{1-2sin^{2}\theta cos^{2}\theta}=1

1−2sin

2

θcos

2

θ

sin

4

θ+cos

4

θ

=1

•••♪

Similar questions