Math, asked by desmont7t, 1 year ago

sin50°-sin70°+sin10°=0


desmont7t: Prove my question friends

Answers

Answered by Pitymys
6

Use the sum formula

 \sin A- \sin B=2\sin(\frac{A-B}{2}) \cos(\frac{A+B}{2})

Now using the above formula,

 \sin 70^o- \sin 10^o=2\sin(\frac{70^o-10^o}{2}) \cos(\frac{70^o+10^o}{2})\\<br />\sin 70^o- \sin 10^o=2\sin(30^o) \cos(40^o)\\<br />\sin 70^o- \sin 10^o=2(\frac{1}{2}) \cos(90^o-50^o) \\<br />\sin 70^o- \sin 10^o= \cos(90^o-50^o) \\<br />\sin 70^o- \sin 10^o= \sin(50^o)

Thus,

 LHS= \sin(50^o) -(\sin 70^o- \sin 10^o)=\sin(50^o) - \sin(50^o) =0=RHS

The proof is complete.


desmont7t: Thanx friend
Answered by vatsarudransh5854
1

Answer

Step-by-step explanation:

sin50 - sin70 +sin10 = 0

sin(60-10) - sin(60+10) + sin 10 =0

sin60cos10 - cos60sin10 - sin60cos10 - cos60sin10 +sin10 = 0

\frac{\sqrt{3} }{2}cos10 - \frac{1}{2\\}sin 10 - \frac{\sqrt{3} }{2}cos 10 - \frac{1}{2}sin10 +sin10 =0

sin10 -sin10 =0

0=0

Hence proved

Similar questions