Math, asked by ansh98711, 1 month ago

Sin5A=16sinpower5A-20sincubeA+5sinA

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:sin5A

\rm \:  =  \:sin(3A + 2A)

We know,

\boxed{ \tt{ \: sin(x + y) = sinxcosy + sinycosx \:  \: }}

So, using this

\rm \:  =  \:sin3Acos2A + sin2Acos3A

We know,

\boxed{ \tt{ \: sin2A = 2 \: sinAcosA}}

\boxed{ \tt{ \: cos2A = 1 -  {2sin}^{2}A \: }}

\boxed{ \tt{ \: sin3A = 3sinA -  {4sin}^{3} A \: }}

\boxed{ \tt{ \: cos3A =  {4cos}^{3}A - 3cosA \: }}

So, on substituting these values, we get

\rm  = (3sinA -  {4sin}^{3}A)(1 - 2 {sin}^{2}A) + 2sinAcosA( {4cos}^{3}A - 3cosA)

\rm  = (3sinA -  {4sin}^{3}A)(1 - 2 {sin}^{2}A) + 2sinA {cos}^{2}A( {4cos}^{2}A - 3)

\rm  = (3sinA -  {4sin}^{3}A)(1 - 2 {sin}^{2}A) + 2sinA {(1 - sin}^{2}A)[{4(1 - sin}^{2}A) - 3]

 \rm  = 3sinA -  {6sin}^{3}A -  {4sin}^{3}A +  {8sin}^{5}A + (2sinA -  {2sin}^{3}A)[4 - 4 {sin}^{2}A - 3]

 \rm  = 3sinA -  {10sin}^{3}A +  {8sin}^{5}A + (2sinA -  {2sin}^{3}A)[1 - 4 {sin}^{2}A ]

 \rm  = 3sinA -  {10sin}^{3}A +  {8sin}^{5}A +  2sinA -  {8sin}^{3}A -  {2sin}^{3}A +  {8sin}^{5}A

 \rm  = 5sinA -  {20sin}^{3}A +  {16sin}^{5}A

Hence,

  \:  \:  \:  \: \boxed{ \tt{ \: \rm sin5A = 5sinA -  {20sin}^{3}A +  {16sin}^{5}A \:  \: }}

More to know :-

\boxed{ \tt{ \: cos2x =  {2cos}^{2}x - 1 \:  \: }}

\boxed{ \tt{ \: cos2x =  {cos}^{2}x -  {sin}^{2}x \:  \: }}

\boxed{ \tt{ \: sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}

\boxed{ \tt{ \: sinx  -  siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}

\boxed{ \tt{ \: cosx +   cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}

Similar questions