Math, asked by aashish204, 5 months ago

sin60°cos30° - cos60°sin 30° +1÷8cos^260°​

Answers

Answered by priyammbafnagmailcom
0

Answer:

Here is the answer

75° is the answer

Answered by 0neAboveAll
0

 \huge\frak \blue{\fcolorbox{red}{lavender} { \ \:  \: Here\ is\ your\ answer\:  \: }}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

sin 60° cos 30° - cos 60° sin 30° + 1 ÷ 8cos²60°

√3/2 * √3/2 - 1/2 * 1/2 + 1 ÷ 8*(√3/2)²

3/4 - 1/4 + 1 ÷ 6

2/4 + 1/6

16/24

2/3

Similar questions