Math, asked by maliktrainer, 1 year ago

sin6q +cos6q=1-3sin2qcos2q

Answers

Answered by manisha2255
4

Step-by-step explanation:

hope you will understand

Attachments:
Answered by harendrachoubay
4

\sin^6 \theta+\cos^6\theta=1-3\sin^2 \theta \cos^2 \theta, proved.

Step-by-step explanation:

Step-by-step explanation:

Prove that, \sin^6 \theta+\cos^6\theta=1-3\sin^2 \theta \cos^2 \theta.

L.H.S. = (\sin^2 \theta)^3+(\cos^2\theta)^3

Using the identity,

(a+b)^{3} =a^{3} +b^{3} +3ab(a+b)

a^{3} +b^{3}=(a+b)^{3} -3ab(a+b)

=(\sin^2 \theta+\cos^2\theta)^3 -3\sin^2\theta\cos^2\theta(\sin^2\theta+\cos^2\theta)

Using the trigonometric identity,

\sin^2 A+\cos^2 A=1

=(1)^3 -3\sin^2\theta\cos^2\theta(1)

=1-3\sin^2 \theta \cos^2 \theta

= L.H.S., proved.

Thus, \sin^6 \theta+\cos^6\theta=1-3\sin^2 \theta \cos^2 \theta, proved.

Similar questions