Sin70+sin50/cos70+cos50
Answers
Answered by
6
Given: The trigonometric term sin 70 + sin 50 / cos 70 + cos 50
To find: The solution of given term.
Solution:
- We have provided with sin 70 + sin 50 / cos 70 + cos 50
- Now we can write it as:
sin (60 + 10) + sin (60 - 10) / cos (60 + 10) + cos (60 - 10)
- Now applying the formula:
sin (a±b) = sin a cos b ± cos a sin b
cos(a+b) = cos a cos b - sin a sin b
cos(a-b) = cos a cos b + sin a sin b
- We get:
sin 60 cos 10 + cos 60 sin 10 + sin 60 cos 10 - cos 60 sin 10 /
cos 60 cos 10 - sin 10 sin 60 + cos 60 cos 10 + sin 10 sin 60
- After cancellation similar terms, we get:
2 sin 60 cos 10 / 2 cos 60 cos 10
- Cancelling cos 10 and 2, we get:
sin 60 / cos 60
tan 60 = √3
Answer:
So the value of sin 70 + sin 50 / cos 70 + cos 50 is √3.
Answered by
1
Answer:
cos70°+cos50°
Step-by-step explanation:
cos70°+sin50°
Similar questions