(sin70° +cos40°)/(cos70°+sin40°)
Answers
Answer
Sin70+cos(90-50)/cos70+sin(90-50)
Sin70+sin50/cos70+cos50
Sin(60+10)+sin(60-10)/cos(60+10)+cos(60-10)
2sin60×cos10/2cos60×cos10
√3/2/1/2=√3
The simplified expression is:
(sin 70° + cos 40°) / (cos 70° + sin 40°) = (sin 55° + cos 40°) / (1 + sin 40°)
(sin70° +cos40°)/(cos70°+sin40°)
We can start by using the following trigonometric identities:
sin (a + b) = sin a cos b + cos a sin b
cos (a + b) = cos a cos b - sin a sin b
Let's rewrite the numerator and denominator using these identities:
sin 70° + cos 40° = sin (70° - 50°) + cos 40°
= sin 70° cos 50° - cos 70° sin 50° + cos 40°
cos 70° + sin 40° = cos (70° - 30°) + sin 40°
= cos 70° cos 30° + sin 70° sin 30° + sin 40°
Now, let's substitute these expressions into the original fraction:
(sin 70° cos 50° - cos 70° sin 50° + cos 40°) / (cos 70° cos 30° + sin 70° sin 30° + sin 40°)
Let's simplify each term:
sin 70° cos 50° = sin (70° + 40°) / 2 = sin 55°
cos 70° sin 50° = cos (50° - 20°) / 2 = cos 35°
cos 70° cos 30° = cos (70° - 60°) / 2 = cos 5°
sin 70° sin 30° = sin (70° - 60°) / 2 = sin 5°
Substituting these values, we get:
(sin 55° + cos 40°) / (cos 5° + sin 5° + sin 40°)
Let's simplify the denominator:
cos 5° + sin 5° = sin (90° - 5°) + sin 5° = sin 90° = 1
Substituting this value, we get:
(sin 55° + cos 40°) / (1 + sin 40°)
Finally,
we can't simplify this any further.
Therefore, the simplified expression is:
(sin 70° + cos 40°) / (cos 70° + sin 40°) = (sin 55° + cos 40°) / (1 + sin 40°)
For similar questions on trigonometric identities,
https://brainly.in/question/1549890
#SPJ3