sin⁸A-cos⁸A=(sin²A-cos²A)(1-2sin²Acos²A)
Answers
Answered by
5
Answer:
To prove :
sin³A - cos³ A
= (2 sin²A - 1)(1-2 sin²A cos²A)
Proof:
Now, sin³A - cos³ A
= (sin A - cos*A) (sin*A + cos*A)
= (sin³A + cos²A) (sin²A - cos²A)
{(sin²A + cos²A)² - 2 sin²A cos²A}
={sin²A - (1 - sin²A)) (1 - 2 sin²A cos²A)
= (sin²A - 1+ sin²A) (1 - 2 sin³A cos²A)
= (2 sin³A - 1) (1 - 2 sin²A cos²A)
sin³A - cos³ A
= (2 sin²A - 1) (1-2 sin²A cos²A)
Hence, proved.
Trigonometric Rules:
• sin²A + cos²A = 1
• sec²A - tan²A = 1
• cosec²A - cot²A = 1
Answered by
1
Guernica, a large black-and-white oil painting executed by Spanish artist Pablo Picasso in 1937 following the German bombing of Guernica, a city in Spain's Basque region.
Similar questions