SinA/1-CosA - 1-CosA/SinA=?
Answers
Answered by
0
-2 cosecA is the ans
Answered by
2
sinA/1-cosA-1-cosA/sinA
[sin^2A-(1-cosA)^2]/sinA(1-cosA)
(sin^2A-1-cos^2A-2cosA)/sinA(1-cosA)
(1-1-2cosA)/sinA(1-cosA)
[since, sin^2A-cos^2A=1]
(2-2cosA)/sinA(1-cosA)
2(1-cosA)/sinA(1-cosA)
-2/sinA
-2cosecA [since 1/sinA=-cosecA]
Hope it helps you
Mark as brainliest
[sin^2A-(1-cosA)^2]/sinA(1-cosA)
(sin^2A-1-cos^2A-2cosA)/sinA(1-cosA)
(1-1-2cosA)/sinA(1-cosA)
[since, sin^2A-cos^2A=1]
(2-2cosA)/sinA(1-cosA)
2(1-cosA)/sinA(1-cosA)
-2/sinA
-2cosecA [since 1/sinA=-cosecA]
Hope it helps you
Mark as brainliest
Similar questions