Math, asked by vijayvizikumar, 1 year ago

sinA/1-cosA=cosecA+cotA​

Answers

Answered by akathwal004
3

hope this answer will be helpful ^_^

Attachments:
Answered by allysia
2

Let's do it,

 \frac{ \sin \: A }{1 -  \cos \: A}  =  \csc \: A +  \cot \: A \\

Using LHS:

multiplying numerator and denominator by (1 + cos A)

 \frac{ \sin \: A (1  +  \cos \: A)}{(1 -  \cos \: A)(1 +  \cos \: A )}  \\  \\  =  \frac{ \sin \: A(1 +  \cos \: A ) }{(1 -  { \cos }^{2}A)}  \\  \\

Since we have an identity as followed:
 { \sin  }^{2}  \alpha  +  { \cos }^{2}  \alpha  = 1  \\ \\1 -   { \cos}^{2}  \alpha  =  { \sin }^{2}  \alpha
So using this we have,
 \frac{ \sin \: A(1 +  \cos \: A )}{ { \sin }^{2}A}  \\ \\   =  \frac{1 +  \cos \: A}{ \sin \: A}  \\  \\  =  \frac{1}{ \cos \: A }  +  \frac{ \cos \: A }{ \sin \: A } \\  \\  =  \csc A +  \cot \: A \:  \\ \\   = RHS \\


Hence proved.

Hope it was satisfying enough.
Similar questions