Math, asked by keyur6167, 4 months ago

sinA/1+cotA - cosA/1+TanA=SinA-CosA​

Answers

Answered by sidratul1
1

Answer:

LHS:

sin A/ 1+cot A - cosA/1+tanA

\frac{sinA}{1+\frac{cosA}{sinA} } - \frac{cosA}{1+\frac{sinA}{cosA} } \\\\\frac{sinA}{\frac{sinA}{sinA}+\frac{cosA}{sinA} } - \frac{cosA}{\frac{cosA}{cosA} +\frac{sinA}{cosA} }\\\\

sinA × \frac{sinA}{sinA+cosA} - cos A × \frac{cos A}{sin A + cosA}

\frac{sin^{2}A - cos^{2}A }{sinA + cosA}

\frac{(sinA+cosA)(sinA-cos)}{sinA+cosA} \\\\sinA-cosA

= RHS (proved)

\dag{\boxed {\underline{\sf{\underline\orange{hope \: it \: helps \: u }}}}}\\\\\dag{\boxed {\underline{\sf{\underline\orange{Please \: mark \: as \: BRAINLIEST! }}}}}

Answered by sandy1816
0

 \frac{sinA}{1 + cotA}  -  \frac{cosA}{1 + tanA}  \\  \\  =  \frac{ {sin}^{2} A}{sinA + cosA}  -  \frac{ {cos}^{2}A }{cosA + sinA}  \\  \\  =  \frac{ {sin}^{2}A -  {cos}^{2} A }{sinA + cosA}  \\  \\  = sinA - cosA

Similar questions