Math, asked by khushiparekh581507, 7 months ago

sinA (1+tanA)+cosA (1+cotA)=secA+cosecA​

Answers

Answered by Ataraxia
6

To Prove :-

\sf sinA(1+tanA)+cosA(1+cotA) = secA+cosecA

Solution :-

\sf L.H.S = sinA(1+tanA)+cosA(1+cotA)

        = \sf sinA+SinAtanA+cosA+cosAcotA

\bullet \bf  \ tanA = \dfrac{sinA}{cosA} \\\\\bullet \ cotA = \dfrac{cosA}{sinA}

       = \sf sinA+  sinA \times \dfrac{sinA}{cosA} +cosA + cosA \times \dfrac{cosA}{sinA} \\\\=  sinA +\dfrac{sinA^2}{cosA} +cosA+\dfrac{cos^2A}{sinA} \\\\= \left( sinA + \dfrac{cos^2A}{sinA} \right) + \left( cosA+\dfrac{sin^2A}{cosA} \right) \\\\= \left( \dfrac{sin^2A+cos^2A}{sinA} \right) +\left( \dfrac{cos^2A+sin^2A}{cosA} \right)

\bullet \bf \ sin^2A+cos^2A = 1

       = \sf \dfrac{1}{sinA} +\dfrac{1}{cosA} \\\\= cosecA+secA \\\\= secA+cosecA \\\\= R.H.S

Hence proved.

Similar questions