sinA(1+tanA) + cosa(1+cotA) = secA +cosecA
Answers
Answered by
0
To prove sin A(1+ tan A)+ cos A(1 + cot A) = sec A + cosec A.
LHS = sin A(1+ tan A)+ cos A(1 + cot A)
= sin A + sin^2 A/ cos A + cos A + cos^2 A/ sin A
= sin A + cos A + [sin^3 A + cos^3 A]/sin A cos A
=[ sin^2 A cos A + cos^2 A sin A + sin^3 A + cos^3 A]/sin A cos A
= [ sin^2 A cos A +cos^3 A + cos^2 A sin A + sin^3 A]/sin A cos A
= [cos A (sin^2 A + cos^2 A) + sin A (sin^2 A + cos^2 A)]/sin A cos A
= [cos A +sin A]/sin A cos A
= (1/sin A) + (1/cos A)
= cosec A + sec A = RHS.
Proved.
sinhaanil1183:
Plz mark me brainliest or you are very rude
Answered by
0
Please mark me as brainliest..... pls mate
Attachments:
Similar questions